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Scaling function for the critical diffusion coefficient of a critical fluid in a finite geometry
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The long-wavelength diffusion coefficient of a critical fluid confined between two parallel plates, separated
by a distancd., is strongly affected by the finite size. Finite size scaling leads us to expect that the vanishing
of the diffusion coefficient ag™! for é&<L, ¢ being the correlation length, would crossoverlio® for &
>L. We show that this is not strictly true. There is a logarithmic scaling violation. We construct a Kawasaki-
like scaling function that connects the thermodynamic regime to the extreme criiedl)(regime.
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One of the earliest and certainly one of the most fre- KeT o 5oup
quently used scaling functions in critical dynamics is the D(k,K)Zm(k +K%) 75 5

scaling function for the thermal conductivity/concentration

diffusivity in a single component/binary fluid near the gas-

liquid critical point/critical mixing point. This is the well This is exact fok— 0 and over the range of practical values
known Kawasaki function, which describes the passage obf thek/« ratio, is accurate to about 5%. This makes it a very
the diffusion coefficienfwe will use binary liquid language useful approximation.

from a long-wavelength, finite correlation length regime to a In this paper, we want to look at the diffusion coefficient
finite-wavelength, infinite correlation length regime. Whenin a finite geometry2—4}—the fluid contained between two
the wavelength is very largek( the wave number0), the  slabs separated by a distanceRecently Koch and Dohm
diffusion coefficientD vanishes ag* 9=«%"4, where¢is  [5] have explored finite size effects on the diffusion coeffi-
the correlation lengthy is the inverse correlation length, and cient in three dimensional Ising-like systems. Unlike their
d is the dimensionality of space. At the critical poiat=0), situation, we will show that our system exhibits a small scal-
this behavior changes ' *. In the physical =3) situa-  ing violation. This is a physical model and hence this viola-
tion, we have the passage described by the Kawasaki fun¢ion should be experimentally accessible. The hydrodynamic

tion K(x) [1]: limit is taken to hold, i.e., we are in the long wavelength
limit (i.e.,k=0). ForL>¢, the diffusion coefficient will be
kgT governed byD (k)= (kgT/67 7). In the finite geometry,

D(k, k)= 6777705K(k§) (1) the leading correction to this result was first obtained by

Calvo and Ferrell6]. The result was a bit of a surprise in the

with presence of a logarithmic factor

In kL
1-——|, kL>1. (6)

—1

1+x%+

. 2) E(k,L)=«1

1
x3——
X

K(x) &
X)=—
4x2

If k—0, D(k)=kgT/6mneé and for «—0, D(k)  This was later obtained using a different technique by one of
= (kg T/67770)(3m/8)k. In the above, is the background the present author&]. The appearance of the logarithmic
critical viscosity. The small divergence of the critical viscos-term prompted us to explore the linge-L. In this limit, we

ity is ignored in this paper. A practical approximation to thefind (as explained below

Kawasaki function is to write it as

L
keT t(k k) L(k=0L)=—In—
D(k,x) 6775 x(K.K) () 12 kL
with £ having the property that To arrive at the diffusion coefficient, one needs
2 3
——« as k—0— o k=118k=k as k—0 (4 D(k.L)— keT t(x,L)
X = 8o x(k, L)

and y is the susceptibility. The first correction being known

to be of the formk?/ x? about thek=0 limit, we can use the wherey(«,L) is the susceptibility in the finite geometry. The
approximationt (k, )/ x(k, k) = (k?+ «?) and so the diffu- limiting form of x(x,L) are y(x,L—x)=«"2 and y(«
sion coefficient becomes —0,L)=L?12, so that
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with G(K,z;,2,) vanishing az=0 andz=L and is given by
D(k,k)—

kgT 11InkL
677 T2 7%l . i

~ sinhaz_sinha(L—z-)
keT 1 1 G(k,z1,25)=

Zn— “is 2asinhal
— g L In L for k L (7)

), for k1<

(12

with a?=k?+ k2. For L—0 andz;>27,, Eq. (12) approxi-
We combine the two forms to propose the scaling function mates to

2
1 1 z.(L-z.)
1+ =|In| 1+ — G~ —— ", (13
Dk, = =2 (1+ ! ° KZLZ)] -

K= 2, 2 R

6mmoé\ W) L e At this point it is easy to check thag(x,L)=(1/L)[G(k

2kL L =0,z,,2,)dz,dz, gives the results mentioned above, Eq.
keT To study the dynamics, we need to introduce the equation

6 F(xL), (8)  of motion for ¢ field. We take this to be a LangeviiQ]
T10¢ equation where the potential corresponds to the free energy

which is the (L) analog of the Kawasaki scaling function, gjsnctmnal of Eq.(9). For the nonconservegifield, this reads

given in Eq.(2).

In the thermodynamic limit kL—x), F(xL)=1 and P 72
rises to (1lkL)In(1/kL) as kL—0. The change irL is _dl:_r K2+ x2— _) w(E,z,t)+N(IZ,z,t), (14)
brought about by varying at a fixed L. AtkL=1, F(«L) ot Fria

=1.57, significantly different from its value in the thermo-

dynamic limit. This should make the effect observable. TowhereN(k,z,t) is the noise, characterized by the correlation
see the existence of the logarithmic terms, one would need a

fairly high degree of accuracy. Now we outline the technical (N(Ky,21,t1)N(Kp,Z,t5))
details.
The free energy functional that governs the static fluctua- =20 8(ky+Kp) 8(z1—2,) 8(t1—tp).  (15)
tion of the order parametep can be taken to be quadratic
and is given by8,9] If the order parameter fielgs is conserved, there will be an

additional factor k?— 92/ 9z%) multiplying I in Eq. (14). The

2 dynamic correlation function reads

L
sz delrf dz
0

+§f dP Y[ y?(F,z=0)+ yA(F,z=L)]. 9

C(lzazl ,22)=<¢//(l2,21,w)(//(—|2,22,— w))

1
= EJ dz’dZ'R,(z;,2')R_(2,,2")

Since the anomalous dimension indgxplays an insignifi-

cant role in the study of dynamics, we can work with this X(N(z")N(z"))
guadratic expression fét. Here the geometry is restricted in 5
the z direction betweerz=0 andz=L. The second term on = ff dzZR.(z1,2')R_(2,,2'), (16)

the right hand side of Eq9) is a surface contribution,c” is
a constant anal, an extrapolation length. For—0, ? must

vanish atz=0 andz=L in order to satisfy the Dirichlet Where
boundary conditions. We sat=0. i )

We introduce the Fourier transform ¢{f’,z) through the +:smhaiz<smhai(L—z>) (17)
relation - 2a.sinha.L

1 o with
W(F,2)= f P(k,z)e'* "d%k, (10)
(2m)* iw
ai:i?+k2+ K2, (18)

wherek is the wave vector in the two-dimensional space.

The two-point correlation functionG(IZ,zl,zz) is the solu-
tion of the differential equation

d2
__k2_ 2
<d22 “

We note that the currerj?(r* ,Z,t) associated with a transport

process is, in general, a bilinear combination of the order
parameter field or a combination of the order parameter field
with a secondary field. Then Kubo’s formula yields the On-

G(k,zy,25)=—6(z,—z 11 -
(k21.2;) (2272,) (1Y sager coefficient corresponding to the currgiit,z,t) as
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The velocity field is solenoidal and $6-5=0. The above
constraint tells us that we should work with a figdd such
thatg =V x A. The correlation functiorC, 5 for the A field
is given by Eq.(12) with k=0=T=T,.. The velocity cor-
whereV, is the volume in the two-dimensional space. relation function follows from

For the binary liquid system, the order parameter figld 2
is the density difference betwsen }he |IQUICj _and gaseous CUUZ(kZJF P )CAA (24)
phase and the relevant currentjis v, wherev is the ve- 1942
locity field. For the liquid-gas system, this current is propor-
tional to the entropy current and so Kubo's formula yields

1 - -
)\MVZLTJ<J(r1’21't1)'J(rz.Zg,tZ))

X d2r,d?r,dz dz,dt,dt,, (19)

In the limit L—0, it is found to be

the thermal diffusivity. For a binary mixture, the current is 1
the mass current and Kubo’s formula yields the mass diffu- C, = (422_21)1_ (25)
sivity. Using f= Ju in Eq. (19), we have 21| 2k2L2

Using Egs.(13) and (25), the Onsager coefficient, in the
v LTJ ((71,29,80)0(F1,29, ) - (2,25, 15) three spatial dimensions, is

><l;)(f)z,22,t2)>d2rld2r2led22dt1dt2. (20) f d kdzleZCSta"c(k 2, ZZ)C ( |ZZ:L 2, w=0)

The decoupled mode approximation enables us to write the
correlation function in Eq(20) as a product of two correla- 1 L[ [z L 1
tion functions [11] viz. ((F1,z4,t)¥(F5,25,t5)) and f dzkf [f f dz,———(42,~7)
(0(Fy,21,t1)-0(F5,25,t5)) and so finally we have n| 4UkL

1 " > XM >
“Ef Cyul(K.21,25,0)Cp(— K, 21,2, 0) 0kdwd ,d2,, oL (Bmz)
(21)
whereC,,, andC,, , respectively, stand for the order param- 4r|_4f J(L Zl)dzlfo 2(42,~21)d7,,

eter and velocity correlation functions.

We note that the time scales associated with the velocity . “
field and the density field are very different. The velocity since fo dzy fo * LL
field relaxes much faster and in the time scale-(t,), the !
density field changes hardly. As a result, the order parameter (- 2]
correlation functionC (", —F5,2;,2,,t;—t;) can be taken _ZJ dzlf dz,
to remain at its static value and hence one needs the zero
frequency limit of the velocity correlation functio€,, . d?k

f f zl( L—z)dz

dz,

Therefore Eq(21) reduces to

4rL46
1 . - 2
m—f d2kdz,dZ,C K, 2, ,2,)C, o (—Ko24,25,0=0). :Lf ak (26
- 22 96 ) 2

The static correlation function for the order paramateis ~ Therefore, forl.—0
given by Eq.(13). We now evaluate the zero frequency limit

of the velocity correlation functior,,(—K,z;,2,,®). The )\och —~LIn—. (27)
relaxation dynamics of thé field is governed by

P P This es_ta_\blishes the point we wanted to make in &g.
——T ( K2— _) 3(K,z,)+N, . (23 Normalizing to the same prefactor for the largand small«
at z? limits leads to the coefficients in E¢7).
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