
PHYSICAL REVIEW E 69, 036116 ~2004!
Scaling function for the critical diffusion coefficient of a critical fluid in a finite geometry
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The long-wavelength diffusion coefficient of a critical fluid confined between two parallel plates, separated
by a distanceL, is strongly affected by the finite size. Finite size scaling leads us to expect that the vanishing
of the diffusion coefficient asj21 for j!L, j being the correlation length, would crossover toL21 for j
@L. We show that this is not strictly true. There is a logarithmic scaling violation. We construct a Kawasaki-
like scaling function that connects the thermodynamic regime to the extreme critical (j@L) regime.
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One of the earliest and certainly one of the most f
quently used scaling functions in critical dynamics is t
scaling function for the thermal conductivity/concentrati
diffusivity in a single component/binary fluid near the ga
liquid critical point/critical mixing point. This is the wel
known Kawasaki function, which describes the passage
the diffusion coefficient~we will use binary liquid language!
from a long-wavelength, finite correlation length regime to
finite-wavelength, infinite correlation length regime. Wh
the wavelength is very large (k, the wave number→0!, the
diffusion coefficientD vanishes asj42d5kd24, wherej is
the correlation length,k is the inverse correlation length, an
d is the dimensionality of space. At the critical point~k50!,
this behavior changes tokd24. In the physical (d53) situa-
tion, we have the passage described by the Kawasaki f
tion K(x) @1#:

D~k,k!5
kBT

6ph0j
K~kj! ~1!

with

K~x!5
3

4x2 F11x21S x32
1

xD tan21xG . ~2!

If k→0, D(k)5kBT/6ph0j and for k→0, D(k)
5(kBT/6ph0)(3p/8)k. In the above,h0 is the background
critical viscosity. The small divergence of the critical visco
ity is ignored in this paper. A practical approximation to t
Kawasaki function is to write it as

D~k,k!5
kBT

6ph0

Ł~k,k!

x~k,k!
~3!

with Ł having the property that

Ł

x
→k as k→0→ 3p

8
k51.18k.k as k→0 ~4!

andx is the susceptibility. The first correction being know
to be of the formk2/k2 about thek50 limit, we can use the
approximationŁ(k,k)/x(k,k)5(k21k2) and so the diffu-
sion coefficient becomes
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D~k,k!5
kBT

6ph0
~k21k2!1/2. ~5!

This is exact fork→0 and over the range of practical value
of thek/k ratio, is accurate to about 5%. This makes it a ve
useful approximation.

In this paper, we want to look at the diffusion coefficie
in a finite geometry@2–4#—the fluid contained between tw
slabs separated by a distanceL. Recently Koch and Dohm
@5# have explored finite size effects on the diffusion coe
cient in three dimensional Ising-like systems. Unlike th
situation, we will show that our system exhibits a small sc
ing violation. This is a physical model and hence this vio
tion should be experimentally accessible. The hydrodyna
limit is taken to hold, i.e., we are in the long waveleng
limit ~i.e., k50). ForL@j, the diffusion coefficient will be
governed byD(k)5(kBT/6ph0)k. In the finite geometry,
the leading correction to this result was first obtained
Calvo and Ferrell@6#. The result was a bit of a surprise in th
presence of a logarithmic factor

Ł~k,L !5k21F12
ln kL

2kL G , kL@1. ~6!

This was later obtained using a different technique by one
the present authors@7#. The appearance of the logarithm
term prompted us to explore the limitj@L. In this limit, we
find ~as explained below!

Ł~k50,L !5
L

12
ln

1

kL
.

To arrive at the diffusion coefficient, one needs

D~k,L !5
kBT

6ph0

Ł~k,L !

x~k,L !
,

wherex(k,L) is the susceptibility in the finite geometry. Th
limiting form of x(k,L) are x(k,L→`)5k22 and x(k
→0,L)5L2/12, so that
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D~k,k!→ kBT

6ph0
kS 12

1

2

ln kL

kL D , for k21,L

→ kBT

6ph0

1

L
ln

1

kL
, for k21@L. ~7!

We combine the two forms to propose the scaling functio

D~k,k!5
kBT

6ph0j S 11
1

k2L2D 11
1

8 F lnS 11
1

k2L2D G 2

11
1

2kL
lnS kL1

1

kL D
5

kBT

6ph0j
F~kL !, ~8!

which is the (k,L) analog of the Kawasaki scaling function
given in Eq.~2!.

In the thermodynamic limit (kL→`), F(kL)51 and
rises to (1/kL)ln(1/kL) as kL→0. The change inkL is
brought about by varyingj at a fixed L. AtkL51, F(kL)
51.57, significantly different from its value in the therm
dynamic limit. This should make the effect observable.
see the existence of the logarithmic terms, one would ne
fairly high degree of accuracy. Now we outline the techni
details.

The free energy functional that governs the static fluct
tion of the order parameterc can be taken to be quadrat
and is given by@8,9#

F5E dD21r E
0

L

dzFk2

2 (
i 51

n

c i
21

1

2 (
i 50

n

~¹W c i !
2G

1
c

lE dD21r @c2~rW,z50!1c2~rW,z5L !#. ~9!

Since the anomalous dimension indexh plays an insignifi-
cant role in the study of dynamics, we can work with th
quadratic expression forF. Here the geometry is restricted i
the z direction betweenz50 andz5L. The second term on
the right hand side of Eq.~9! is a surface contribution, ‘‘c’’ is
a constant andl, an extrapolation length. Forl→0, c2 must
vanish atz50 and z5L in order to satisfy the Dirichlet
boundary conditions. We setl50.

We introduce the Fourier transform ofc(rW,z) through the
relation

c~rW,z!5
1

~2p!2E c~kW ,z!eik•W rWd2k, ~10!

where kW is the wave vector in the two-dimensional spac
The two-point correlation functionG(kW ,z1 ,z2) is the solu-
tion of the differential equation

S d2

dz2
2k22k2D G~k,z1 ,z2!52d~z12z2! ~11!
03611
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with G(kW ,z1 ,z2) vanishing atz50 andz5L and is given by

G~kW ,z1 ,z2!5
sinhaz,sinha~L2z.!

2a sinhaL
~12!

with a25k21k2. For L→0 andz1.z2, Eq. ~12! approxi-
mates to

G;
z,~L2z.!

2L
. ~13!

At this point it is easy to check thatx(k,L)5(1/L)*G(kW
50,z1 ,z2)dz1dz2 gives the results mentioned above, Eq.~7!.

To study the dynamics, we need to introduce the equa
of motion for c field. We take this to be a Langevin@10#
equation where the potential corresponds to the free en
functional of Eq.~9!. For the nonconservedc field, this reads
as

]c

]t
52GS k21k22

]2

]z2D c~kW ,z,t !1N~kW ,z,t !, ~14!

whereN(kW ,z,t) is the noise, characterized by the correlati

^N~kW1 ,z1 ,t1!N~kW2 ,z2 ,t2!&

52Gd~kW11kW2!d~z12z2!d~ t12t2!. ~15!

If the order parameter fieldc is conserved, there will be an
additional factor (k22]2/]z2) multiplying G in Eq. ~14!. The
dynamic correlation function reads

C~kW ,z1 ,z2!5^c~kW ,z1 ,v!c~2kW ,z2 ,2v!&

5
1

G2E dz8dz9R1~z1 ,z8!R2~z2 ,z9!

3^N~z8!N~z9!&

5
2

GE dz8R1~z1 ,z8!R2~z2 ,z8!, ~16!

where

R65
sinha6z,sinha6~L2z.!

2a6sinha6L
~17!

with

a6
2 56

iv

G
1k21k2. ~18!

We note that the currentjW(rW,z,t) associated with a transpo
process is, in general, a bilinear combination of the or
parameter field or a combination of the order parameter fi
with a secondary field. Then Kubo’s formula yields the O
sager coefficient corresponding to the currentjW(rW,z,t) as
6-2
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l}
1

V2LTE ^ jW~rW1 ,z1 ,t1!• jW~rW2 ,z2 ,t2!&

3d2r 1d2r 2dz1dz2dt1dt2 , ~19!

whereV2 is the volume in the two-dimensional space.
For the binary liquid system, the order parameter fieldc

is the density difference between the liquid and gase
phase and the relevant current isjW5cvW , wherevW is the ve-
locity field. For the liquid-gas system, this current is prop
tional to the entropy current and so Kubo’s formula yiel
the thermal diffusivity. For a binary mixture, the current
the mass current and Kubo’s formula yields the mass di
sivity. Using jW5cvW in Eq. ~19!, we have

l}
1

V2LTE ^c~rW1 ,z1 ,t1!vW ~rW1 ,z1 ,t1!•c~rW2 ,z2 ,t2!

3vW ~rW2 ,z2 ,t2!&d2r 1d2r 2dz1dz2dt1dt2 . ~20!

The decoupled mode approximation enables us to write
correlation function in Eq.~20! as a product of two correla
tion functions @11# viz. ^c(rW1 ,z1 ,t1)c(rW2 ,z2 ,t2)& and
^vW (rW1 ,z1 ,t1)•vW (rW2 ,z2 ,t2)& and so finally we have

l}
1

LE Ccc~kW ,z1 ,z2 ,v!Cvv~2kW ,z1 ,z2 ,v!d2kdvdz1dz2 ,

~21!

whereCcc andCvv , respectively, stand for the order param
eter and velocity correlation functions.

We note that the time scales associated with the velo
field and the density field are very different. The veloc
field relaxes much faster and in the time scale (t12t2), the
density field changes hardly. As a result, the order param
correlation functionCcc(rW12rW2 ,z1 ,z2 ,t12t2) can be taken
to remain at its static value and hence one needs the
frequency limit of the velocity correlation functionCvv .
Therefore Eq.~21! reduces to

l}
1

LE d2kdz1dz2Cccstatic~kW ,z1 ,z2!Cvv~2kW ,z1 ,z2 ,v50!.

~22!

The static correlation function for the order parameterc is
given by Eq.~13!. We now evaluate the zero frequency lim
of the velocity correlation functioncvv(2kW ,z1 ,z2 ,v). The
relaxation dynamics of thevW field is governed by

]vW
]t

52GvS k22
]2

]z2D vW ~kW ,z,t !1NW v . ~23!
ys

03611
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The velocity field is solenoidal and so¹W •vW 50. The above
constraint tells us that we should work with a fieldAW , such
that vW 5¹W 3AW . The correlation functionCAA for the AW field
is given by Eq.~12! with k50⇒T5Tc . The velocity cor-
relation function follows from

Cvv5S k21
]2

]z1]z2
DCAA . ~24!

In the limit L→0, it is found to be

Cvv5
1

2G F 1

2k2L2
~4z22z1!G . ~25!

Using Eqs.~13! and ~25!, the Onsager coefficient, in th
three spatial dimensions, is

l}
1

LE d2kdz1dz2Ccc
static~kW ,z1 ,z2!Cvv~2kW ,z1 ,z2 ,v50!

5
1

LE d2kE
0

LF E
0

z1
1E

z1

L Gdz2

1

4Gk2L2
~4z22z1!

3
z2~L2z1!

2L
~z1.z2!

5
1

4GL4E d2k

k2 E0

L

~L2z1!dz1E
0

z1
z2~4z22z1!dz2 ,

since E
0

L

dz1F E
0

z1
1E

z1
LGdz2

52E
0

L

dz1E
0

z1
dz2

5
1

4GL4

5

6E d2k

k2 E0

L

z1
3~L2z1!dz1

5
L

96GE d2k

k2
. ~26!

Therefore, forL→0

l}LE
k

L21dk

k
;L ln

1

kL
. ~27!

This establishes the point we wanted to make in Eq.~7!.
Normalizing to the same prefactor for the largek and smallk
limits leads to the coefficients in Eq.~7!.
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